Raciocínios Espúrios

quinta-feira, fevereiro 14, 2008

Leitura do Dia - MCMC maximum likelihood for latent state models

MCMC maximum likelihood for latent state models

Eric Jacquier Michael Johannes Nicholas Polson


This paper develops a pure simulation-based approach for computing maximum likelihood estimates in latent state variable models using Markov Chain Monte Carlo methods (MCMC). Our MCMC algorithm simultaneously evaluates and optimizes the likelihood function without resorting to gradient methods. The approach relies on data augmentation, with insights similar to simulated annealing and evolutionary Monte Carlo algorithms. We prove a limit theorem in the degree of data augmentation and use this to provide standard errors and convergence diagnostics. The resulting estimator inherits the sampling asymptotic properties of maximum likelihood. We demonstrate the approach on two latent state models central to financial econometrics: a stochastic volatility and a multivariate jump-diffusion models. We find that convergence to the MLE is fast, requiring only a small degree of augmentation.

Uma aplicação muito interessente de métodos de Markov Chain Monte Carlo em um contexto de inferência clássica.





posted by Márcio Laurini at 7:53 PM

0 Comments:

Postar um comentário

<< Home

Quem sou eu

Nome: Márcio Laurini

Econometrista de aluguel

Ver meu perfil completo

Previous Posts

  • O Manifesto
  • O Manifesto
  • Meus Heróis - Danny Quah
  • De volta a programação normal
  • Penultimo round
  • A melhor notícia para um acadêmico: Aceitação
  • Mais uma semana daquelas.
  • Heterodoxia Bayesiana
  • O tempo, novamente.
  • Novas Aquisições - A Love Supreme

Powered by Blogger