quarta-feira, novembro 04, 2015

Mini-Curso Introdução ao Cálculo Estocástico e Apreçamento de Derivativos - XV Workshop de Economia - FEARP

Nesse ano teremos um mini-curso no Workshop de Economia da FEARP, e com grande prazer teremos o Fernando Auibe ministrando um curso sobre Introdução ao Cálculo Estocástico e Apreçamento de Derivativos. O curso será no dia 10 de Novembro, na sala 16 do Bloco B1 da FEARP-USP, das 13:30 até as 17:30  Não é necessária inscrição prévia.
Será uma excelente oportunidade para os interessados em finanças. Eu acho o livro "Modelos Quantitativos em Finanças" um dos mais completos e didáticos livros sobre finanças avançadas, e assim recomendo fortemente o curso e o livro.

O curso é direcionado a alunos de graduação e de pós-graduação com interesse na moderna teoria de apreçamento de ativos, com especial destaque para a modelagem e apreçamento de commodities. O curso é baseado no livro Modelos Quantitativos em Finanças Editora Bookman (2013), escrito pelo ministrante Fernando Auibe.

Currículo - Graduado em Engenharia Elétrica pela Universidade Federal de Goiás (1980), mestrado (1995) e doutorado (2005) ambos em Engenharia de Produção - Departamento de Engenharia Industrial, Pontifícia Universidade Católica do Rio de Janeiro. Lecionou como professor adjunto da PUC-RJ no Depto de Engenharia Industrial por 20 anos (1995-2015). Atuou como engenheiro de petróleo na Petrobras por 34 anos (1981-2015). Atualmente é professor adjunto na Faculdade de Ciências Econômicas da Universidade do Estado do Rio de Janeiro.


Introdução ao Cálculo Estocástico e Apreçamento de Derivativos
Fernando Antonio Lucena Aiube
Faculdade de Ciências Econômicas
Universidade do Estado do Rio de Janeiro

Resumo
O objetivo deste curso introdutório é fundamentalmente o de apresentar
os conceitos do cálculo estocástico e sua aplicação ao apreçamento
de derivativos em finanças. Fazemos uso dos conceitos em tempo
contínuo que é a forma mais usual na literatura.
A teoria de finanças ganhou um impulso enorme nas últimas décadas
com o sucesso do trabalho seminal de Black, Merton e Scholes
(BMS) em 1973. Inaugurou-se a partir de então uma nova etapa em
finanças. O modelo por eles proposto alavancou o desenvolvimento dos
mercados de derivativos mundo afora. Por outro lado, à medida que os
mercados tornaram-se mais sofisticados na proposição de derivativos,
o meio acadêmico sentiu-se mais estimulado e avançou na formulação
e estimação (calibração) de tais modelos.
Iniciamos com os conceitos básicos de processos estocásticos e apresentamos
o modelo usal de preços das ações. Seguimos com o cálculo
estocástico destacando a fórmula de Itô. Fazemos a derivação do modelo
de BMS na forma clássica (tal qual foi apresentado no artigo
original), apresentamos sua solução e as limitações. Posteriormente,
apresentamos os conceitos de apreçamento de derivativos através da
medida martingal equivalente (MME). Trata-se da forma mais usual
de apreçamento na literatura. Destacamos então os teoremas fundamentais
de finanças. Por fim apresentamos os modelos em commodities
dada a relevância para na última década e a importância para o Brasil.

1 Motivação
1.1 Derivativos: definições básicas
1.2 Opções
2 Introdução
2.1 Processos estocásticos
2.2 Processo Browniano padrão
2.3 Variação quadrática do Browniano
2.4 Processos aritméticos e geométricos
3 Cálculo estocástico
3.1 Regras básicas de operação
3.2 Fórmula de Itô
3.3 Integral de Itô - Isometria
3.4 Solução de EDP's estocásticas
4 Apreçamento de opções: abordagem clássica
4.1 Derivação do modelo de Black, Merton e Scholes
4.2 Solução da EDP de BMS
4.3 Modelo de Heston
5 Apreçamento pela medida martingal
5.1 Definições básicas
5.2 Noção de sigma-álgebra
5.3 Medida de probabilidade
5.4 Valor esperado condicional
5.5 Processos martingais
6 Apreçamento de opções: abordagem pela MME
6.1 Mudança de medida
6.2 Apreçamento pela medida martingal
6.3 Teoremas fundamentais de finanças
6.4 Apreçamento por MC
7 Modelos em commodities
7.1 Definições e propriedades
7.2 Preço futuro e forward
7.3 Retorno de conveniência
7.4 Estrutura a termo dos preços
7.5 Estrutura a termo da volatilidade
7.6 Preço futuro e preço à vista
7.7 Alguns modelos clássicos
7.8 Modelo de um fator
7.9 Modelo de dois fatores
7.10 Modelo de Schwartz e Smith
7.11 Modelo de três fatores


Bibliografia
1. Aiube, F.A.L. (2013). Modelos Quantitativos em Finanças. Porto
Alegre, Editora Bookman.
2. Hirsa, A., Neftci S. (2013). An Introduction to the mathematics of
financial Derivatives. 2nd edition St Louis, Academic Press.
3. Hull, J. (2014). Options, Futures and Other Derivatives, 9th edition,
Pearson.
4. McDonald R. (2003). Derivatives Markets. Reading: Addison-Wesley.
5. Shreve, S. (2004). Stochastic Calculus for Finance: continuous time
models. New York, Springer.
6. Willmot P., Howison, S., Dewynne J (1995). The mathematics of fi-
nancial Derivatives. Cambridge: Cambridge.

XV Workshop de Economia - FEARP

XV Workshop de Economia - FEARP

Nos dias 10 e 11 de novembro, o Programa de Pós-Graduação em Economia – Área: Economia Aplicada realiza o XV Workshop de Economia. O evento contará com palestras de pesquisadores e professores de instituições de ensino como FGV, Insper, UERJ, FEA São Paulo e FEA-RP.

Gratuito e aberto ao público, o XV Workshop de Economia será realizado no Anfiteatro Prof. Dr. Ivo Torres (Bloco A) e na sala 16 do Bloco B1. Para participar, não é necessário realizar inscrição prévia.

O XV Workshop de Economia conta com o apoio da Fundace. Mais informações pelo telefone (16) 3315-3910.

Confira a programação:
Dia 10/11/2015 – terça-feira (Sala 16 do Bloco B1)
13h30 – 17h30: Minicurso – Introdução ao Cálculo Estocástico e Apreçamento de Derivativos
Prof. Dr. Fernando Aiube (UERJ)
O curso é direcionado a alunos de graduação e de pós-graduação com interesse na moderna teoria de apreçamento de ativos, com especial destaque para a modelagem e apreçamento de commodities.

Dia 11/11/2015 – quarta-feira (Anfiteatro)
9h30 – 10h: Recepção e abertura

Palestras – 10h – 12h:
Prof. Dr. Daniel Santos (FEA-RP - Lepes) "Intervenções Precoces: uma agenda para o Brasil"
Prof. Dr. Luiz Guilherme Scorzafave (FEA-RP - Lepes) - "Perspectivas em avaliação de políticas educacionais brasileiras"

Palestras – 14h30 – 16h30:
Prof. Dr. Pedro Cavalcanti Ferreira (EPGE/FGV) - “Education Policies and Structural Transformation”
Prof. Dr. Marcelo Rodrigues dos Santos (Insper) - “The effects of business friendly institutions on the allocation of talents and aggregate productivity”

Coffee Break – 16h30 – 17h

Palestra 17h-18h:
Prof. Dr. Naércio Menezes (Insper e FEA) - “Running away from the poor: bolsa-familia and entry in school markets”

Painel de Conjuntura (18h-19h)
Prof. Dr. Alex Ferreira (FEA-RP) e Prof. Dr. Luciano Nakabashi (FEA-RP)

Eu posso ver minha casa daqui - Elite Dangerous

Eu posso ver minha casa daqui 

Eu consigo estimar sua renda daqui. 

Mars High Starport. 

Alguns screenshots que eu fiz do Elite Dangerous. Acho que a imagem mais impressionante é a segunda, com uma perspectiva luminosidade noturna. Acho que um dos trabalhos mais legais que eu fiz até hoje foi a estimação em espaço contínuo (Income Estimation using Night Luminosity: A Continuous Spatial Model, Laurini, M. P. (2015)) de rendas usando os dados do DMSP-OLS Nighttime Lights Time Series, extendendo em algumas direções a famosa estimação do artigo "MEASURING ECONOMIC GROWTH FROM OUTER SPACE", J. Vernon Henderson, Adam Storeygard, and David N. Weil.  American Economic Review. 2012 Apr; 102(2): 994–1028. Ainda acho uma idéia fantástica, e creio que muitos desenvolvimentos e aplicações são ainda possíveis com esses dados.